`
近乎sns
  • 浏览: 12016 次
  • 性别: Icon_minigender_2
  • 来自: 青岛
文章分类
社区版块
存档分类
最新评论

递归与尾递归(C语言)

C++ 
阅读更多

在计算机科学领域中,递归式通过递归函数来实现的。程序调用自身的编程技巧称为递归( recursion)。

一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解, 递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。

一般来说,递归需要有:边界条件、递归前进段和递归返回段。

当边界条件不满足时,递归前进;当边界条件满足时,递归返回。

注意:

(1) 递归就是在过程或函数里调用自身;

(2) 在使用递归策略时,必须有一个明确的递归结束条件,称为递归出口。

基本递归

问题:计算n!

数学上的计算公式为:n!=n×(n-1)×(n-2)……2×1

使用递归的方式,可以定义为:

以递归的方式计算4!

F(4)=4×F(3)            递归阶段

    F(3)=3×F(2)

         F(2)=2×F(1)

              F(1)=1  终止条件

         F(2)=(2)×(1)    回归阶段

    F(3)=(3)×(2)

F(4)=(4)×(6)

24                  递归完成

以递归方式实现阶乘函数的实现:

int fact(int n) {    if(n < 0)        return 0;    else if (n == 0 || n == 1)        return 1;    else
        return n * fact(n - 1);
}

下面来详细分析递归的工作原理

先看看C语言中函数的执行方式,需要了解一些关于C程序在内存中的组织方式:

BSS段:(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域。BSS是英文Block Started by Symbol的简称。BSS段属于静态内存分配。

数据段 :数据段(data segment)通常是指用来存放程序中已初始化的全局变量的一块内存区域。数据段属于静态内存分配。 

代码段: 代码段(code segment/text segment)通常是指用来存放 程序执行代码的一块内存区域。这部分区域的大小在程序运行前就已经确定,并且内存区域通常属于只读 , 某些架构也允许代码段为可写,即允许修改程序。在代码段中,也有可能包含一些只读的常数变量 ,例如字符串常量等。程序段为程序代码在内存中的映射.一个 程序可以在内存中多有个副本.

堆(heap) :堆是用于存放进程运行中被动态分配的内存段,它的大小并不固定,可动态扩张或缩减。当进程调用malloc/free等函数分配内存时,新分配的内存就被动态添加到堆上(堆被扩张)/释放的内存从堆中被剔除(堆被缩减)

栈(stack) :栈又称堆栈, 存放程序的局部变量(但不包括static声明的变量, static 意味着 在数据段中存放变量)。除此以外,在函数被调用时,栈用来传递参数和返回 值。由于栈的后进先出特点,所以栈特别方便用来保存/恢复调用现场。从这个意义上讲,我们可以把堆栈看成一个寄存、交换临时数据的内存区。

堆的增长方向为从低地址到高地址向上增长,而栈的增长方向刚好相反(实际情况与CPU的体系结构有关)

当C程序中调用了一个函数时,栈中会分配一块空间来保存与这个调用相关的信息,每一个调用都被当作是活跃的。栈上的那块存储空间称为活跃记录或者栈帧

栈帧由5个区域组成:输入参数、返回值空间、计算表达式时用到的临时存储空间、函数调用时保存的状态信息以及输出参数,参见下图:

可以使用下面的程序来检验:

#include <stdio.h>int g1=0, g2=0, g3=0;int max(int i)
{    int m1 = 0, m2, m3 = 0, *p_max;    static n1_max = 0, n2_max, n3_max = 0;
    p_max = (int*)malloc(10);
    printf("打印max程序地址\n");
    printf("in max: 0x%08x\n\n",max);
    printf("打印max传入参数地址\n");
    printf("in max: 0x%08x\n\n",&i);
    printf("打印max函数中静态变量地址\n");
    printf("0x%08x\n",&n1_max); //打印各本地变量的内存地址
    printf("0x%08x\n",&n2_max);
    printf("0x%08x\n\n",&n3_max);
    printf("打印max函数中局部变量地址\n");
    printf("0x%08x\n",&m1); //打印各本地变量的内存地址
    printf("0x%08x\n",&m2);
    printf("0x%08x\n\n",&m3);
    printf("打印max函数中malloc分配地址\n");
    printf("0x%08x\n\n",p_max); //打印各本地变量的内存地址
    if(i) return 1;    else return 0;
}int main(int argc, char **argv)
{    static int s1=0, s2, s3=0;    int v1=0, v2, v3=0;    int *p;    
    p = (int*)malloc(10);
    printf("打印各全局变量(已初始化)的内存地址\n");
    printf("0x%08x\n",&g1); //打印各全局变量的内存地址
    printf("0x%08x\n",&g2);
    printf("0x%08x\n\n",&g3);
    printf("======================\n");
    printf("打印程序初始程序main地址\n");
    printf("main: 0x%08x\n\n", main);
    printf("打印主参地址\n");
    printf("argv: 0x%08x\n\n",argv);
    printf("打印各静态变量的内存地址\n");
    printf("0x%08x\n",&s1); //打印各静态变量的内存地址
    printf("0x%08x\n",&s2);
    printf("0x%08x\n\n",&s3);
    printf("打印各局部变量的内存地址\n");
    printf("0x%08x\n",&v1); //打印各本地变量的内存地址
    printf("0x%08x\n",&v2);
    printf("0x%08x\n\n",&v3);
    printf("打印malloc分配的堆地址\n");
    printf("malloc: 0x%08x\n\n",p);
    printf("======================\n");
    max(v1);
    printf("======================\n");
    printf("打印子函数起始地址\n");
    printf("max: 0x%08x\n\n",max);    return 0;
}

栈是用来存储函数调用信息的绝好方案,然而栈也有一些缺点:

栈维护了每个函数调用的信息直到函数返回后才释放,这需要占用相当大的空间,尤其是在程序中使用了许多的递归调用的情况下。除此之外,因为有大量的 信息需要保存和恢复,因此生成和销毁活跃记录需要消耗一定的时间。我们需要考虑采用迭代的方案。幸运的是我们可以采用一种称为尾递归的特殊递归方式来避免 前面提到的这些缺点。

尾递归

定义

如果一个函数中所有递归形式的调用都出现在函数的末尾,我们称这个递归函数是尾递归的。当递归调用是整个函数体中最后执行的语句且它的返回值不属于表达式的一部分时,这个递归调用就是尾递归。尾递归函数的特点是在回归过程中不用做任何操作,这个特性很重要,因为大多数现代的编译器会利用这种特点自动生成优化的代码。

原理

当编译器检测到一个函数调用是尾递归的时候,它就覆盖当前的活动记录而不是在栈中去创建一个新的。编译器可以做到这点,因为递归调用是当前活跃期内 最后一条待执行的语句,于是当这个调用返回时栈帧中并没有其他事情可做,因此也就没有保存栈帧的必要了。通过覆盖当前的栈帧而不是在其之上重新添加一个, 这样所使用的栈空间就大大缩减了,这使得实际的运行效率会变得更高。虽然编译器能够优化尾递归造成的栈溢出问题,但是在编程中,我们还是应该尽量避免尾递 归的出现,因为所有的尾递归都是可以用简单的goto循环替代的。

实例

为了理解尾递归是如何工作的,让我们再次以递归的形式计算阶乘。首先,这可以很容易让我们理解为什么之前所定义的递归不 是尾递归。回忆之前对计算n!的定义:在每个活跃期计算n倍的(n-1)!的值,让n=n-1并持续这个过程直到n=1为止。这种定义不是尾递归的,因为 每个活跃期的返回值都依赖于用n乘以下一个活跃期的返回值,因此每次调用产生的栈帧将不得不保存在栈上直到下一个子调用的返回值确定。现在让我们考虑以尾 递归的形式来定义计算n!的过程。

这种定义还需要接受第二个参数a,除此之外并没有太大区别。a(初始化为1)维护递归层次的深度。这就让我们避免了每次还需要将返回值再乘以n。然而,在每次递归调用中,令a=na并且n=n-1。继续递归调用,直到n=1,这满足结束条件,此时直接返回a即可。

代码实例给出了一个C函数facttail,它接受一个整数n并以尾递归的形式计算n!。这个函数还接受一个参数a,a的初始值为1。facttail使用a来维护递归层次的深度,除此之外它和fact很相似。读者可以注意一下函数的具体实现和尾递归定义的相似之处。

int facttail(int n, int a)
{    if (n < 0)        return 0;    else if (n == 0)        return 1;    else if (n == 1)        return a;    else
        return facttail(n - 1, n * a);
}

示例中的函数是尾递归的,因为对facttail的单次递归调用是函数返回前最后执行的一条语句。在facttail中 碰巧最后一条语句也是对facttail的调用,但这并不是必需的。换句话说,在递归调用之后还可以有其他的语句执行,只是它们只能在递归调用没有执行时 才可以执行。

尾递归是极其重要的,不用尾递归,函数的堆栈耗用难以估量,需要保存很多中间函数的堆栈。比如f(n, sum) = f(n-1) + value(n) + sum; 会保存n个函数调用堆栈,而使用尾递归f(n, sum) = f(n-1, sum+value(n)); 这样则只保留后一个函数堆栈即可,之前的可优化删去。

也许在C语言中有很多的特例,但编程语言不只有C语言,在函数式语言Erlang中(亦是栈语言),如果想要保持语言的高并发特性,就必须用尾递归来替代传统的递归。

文章来之近乎sns开发分享社区

分享到:
评论

相关推荐

    从尾到头打印链表(C语言实现)

    C语言实现 从尾到头打印链表 递归 反转链表

    C.rar_instead5ss_尾递归_整数转为二进制数

    在C语言的环境下,运用尾递归将整数转换为二进制数 在C语言的环境下,运用尾递归将整数转换为二进制数

    C语言解析教程(原书第4版)(美) 凯利.pdf

    1.10.3 输入文件尾标志 1.10.4 输入和输出的重定向 1.11 总结 1.12 练习 第2章 词法元素、操作符和c系统 2.1 字符和词法元素 2.2 语法规则 2.3 注释 2.4 关键字 2.5 标识符 2.6 常量 2.7 字符串常量 2.8 操作符和...

    C语言实例解析精粹(第二版) 光盘代码

    C语言实例解析精粹(第二版) 光盘代码 本文件包括以下内容: ※ 1、文件说明 ※ 2、源码操作说明 ※ 3、光盘目录清单 ◎ 源码操作说明 源代码使用方法是(以实例1为例): 将该实例的源码,比如实例1的1.c文件(可以...

    C语言程序源代码(大集合).rar

    C语言程序源代码(大集合).rar 实际只有139个,其余部分丢失! 第一部分 基础篇 001 第一个C程序 002 运行多个源文件 003 求整数之积 004 比较实数大小 005 字符的输出 006 显示变量所占字节数 007 自增/自...

    C语言源代码实例.rar

    第三部分 数值计算与趣味数学篇 075 绘制余弦曲线和直线的迭加 076 计算高次方数的尾数 077 打鱼还是晒网 078 怎样存钱以获取最大利息 079 阿姆斯特朗数 080 亲密数 081 自守数 082 具有abcd=(ab+cd)2性质的...

    C语言实例解析精粹

    第三部分 数值计算与趣味数学篇 075 绘制余弦曲线和直线的迭加 076 计算高次方数的尾数 077 打鱼还是晒网 078 怎样存钱以获取最大利息 079 阿姆斯特朗数 080 亲密数 081 自守数 082 具有abcd=(ab+cd)2性质的...

    c语言实例解析-数值趣味数学篇

    第三部分 数值计算与趣味数学篇 075 绘制余弦曲线和直线的迭加 076 计算高次方数的尾数 077 打鱼还是晒网 078 怎样存钱以获取最大利息 079 阿姆斯特朗数 080 亲密数 081 自守数 082 具有abcd=(ab+cd)2性质的...

    C语言通用范例开发金典.part2.rar

    1.4.11 中序非递归遍历二叉树(链式结构)(2) 177 范例1-65 中序非递归遍历二叉树 177 ∷相关函数:InOrderTraverse2函数 1.4.12 后序遍历二叉树(顺序结构) 180 范例1-66 后序遍历二叉树 180 ∷相关函数:...

    C语言经典源代码实例 数据结构 操作系统 图形等

    第三部分 数值计算与趣味数学篇 075 绘制余弦曲线和直线的迭加 076 计算高次方数的尾数 077 打鱼还是晒网 078 怎样存钱以获取最大利息 079 阿姆斯特朗数 080 亲密数 081 自守数 082 具有abcd=(ab+cd)2性质的...

    C语言程序设计-精选习题和案例

    递归实现字符串逆序,爱因斯坦台阶问题,字符串拆分到数组,Sin(X)展开式,二进制回文,地铁导航,绘制cos(x)曲线,魔方矩阵,插入单词,通用数据类型的设计,约瑟夫问题,数字反转,有机体生命游戏,N!有多少个尾数...

    C语言常用算法

    第三部分 数值计算与趣味数学篇 075 绘制余弦曲线和直线的迭加 076 计算高次方数的尾数 077 打鱼还是晒网 078 怎样存钱以获取最大利息 079 阿姆斯特朗数 080 亲密数 081 自守数 082 具有abcd=(ab+cd)2性质的...

    220个C语言程序源代码.zip

    第三部分 数值计算与趣味数学篇 075 绘制余弦曲线和直线的迭加 076 计算高次方数的尾数 077 打鱼还是晒网 078 怎样存钱以获取最大利息 079 阿姆斯特朗数 080 亲密数 081 自守数 082 具有abcd=(ab+cd)2性质的...

    C语言精粹(第2版)随书关盘

    第三部分 数值计算与趣味数学篇 075 绘制余弦曲线和直线的迭加 076 计算高次方数的尾数 077 打鱼还是晒网 078 怎样存钱以获取最大利息 079 阿姆斯特朗数 080 亲密数 081 自守数 082 具有abcd=(ab+cd)2性质的...

    220个C语言程序源代码集合.zip

    第三部分 数值计算与趣味数学篇 075 绘制余弦曲线和直线的迭加 076 计算高次方数的尾数 077 打鱼还是晒网 078 怎样存钱以获取最大利息 079 阿姆斯特朗数 080 亲密数 081 自守数 082 具有abcd=(ab+cd)2性质的...

    220个C源代码 初学C语言必备

    第三部分 数值计算与趣味数学篇 075 绘制余弦曲线和直线的迭加 076 计算高次方数的尾数 077 打鱼还是晒网 078 怎样存钱以获取最大利息 079 阿姆斯特朗数 080 亲密数 081 自守数 082 具有abcd=(ab+cd)2性质的...

    关于C的精粹包含至少200个C语言小程序

    第三部分 数值计算与趣味数学篇 075 绘制余弦曲线和直线的迭加 076 计算高次方数的尾数 077 打鱼还是晒网 078 怎样存钱以获取最大利息 079 阿姆斯特朗数 080 亲密数 081 自守数 082 具有abcd=(ab+cd)2性质的...

    C语言通用范例开发金典.part1.rar

    1.4.11 中序非递归遍历二叉树(链式结构)(2) 177 范例1-65 中序非递归遍历二叉树 177 ∷相关函数:InOrderTraverse2函数 1.4.12 后序遍历二叉树(顺序结构) 180 范例1-66 后序遍历二叉树 180 ∷相关函数:...

    C语言学习实例220例

    c语言开发实例目录: 第一部分 基础篇 001 第一个C程序 002 运行多个源文件 003 求整数之积 004 比较实数大小 005 字符的输出 006 显示变量所占字节数 007 自增/自减运算 008 数列求和 009 乘法口诀表 010 猜数字...

    浙江大学C语言上机练习题附答案

    浙江大学C语言上机练习题&答案 第2周(M2) 2 20011求华氏温度100°F对应的摄氏温度。 2 20012 求华氏温度 150°F 对应的摄氏温度。 3 20013求摄氏温度26°C对应的华氏温度。 3 20015当n为152时,分别求出n的个位...

Global site tag (gtag.js) - Google Analytics